If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=6+17-16t^2
We move all terms to the left:
10-(6+17-16t^2)=0
We get rid of parentheses
16t^2-6-17+10=0
We add all the numbers together, and all the variables
16t^2-13=0
a = 16; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·16·(-13)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{13}}{2*16}=\frac{0-8\sqrt{13}}{32} =-\frac{8\sqrt{13}}{32} =-\frac{\sqrt{13}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{13}}{2*16}=\frac{0+8\sqrt{13}}{32} =\frac{8\sqrt{13}}{32} =\frac{\sqrt{13}}{4} $
| -3+7(-1+8v)=214 | | 14m-17=39 | | 7+2n=-8+5n | | 8u+19=11u-5 | | 10x-5+105=180 | | 2(4-2x)=-32 | | B=12.4b+6= | | −3x^2−6x+189=0 | | -31-6x=33-2x | | e-1.95=2.97 | | v/2+6=9 | | -5w=-6w-10 | | 6w+13=7w+2 | | (105)=(3x+30) | | d-4.25=-7.6 | | x+4+x+2x=180 | | -60+7x=48+13x | | x+4x+x+2x=180 | | 9x-21=34 | | n+6=5+9 | | 4(-3x+4)=-2(6x+-8) | | Z+39=14z+6 | | 27+9x=81 | | 4b=-8+8b | | 2(4-2x)=32 | | 4=(x-2)/3 | | r/3-2=4 | | 6a+19=10a-9 | | 12=6+v | | 14x-20-4x=70 | | -6(3x+4)+6x=72 | | 7) 2x+4x-7=23 |